
Alambic: An Open-Source Platform for

Software Engineering Data Management

The Case of Embedded Software Development

Boris Baldassari

Castalia Solutions,

10 Rue de Penthièvre,

75088 Paris
Tel: +33 648 038 289 – e-mail: boris.baldassari@castalia.solutions

Abstract:
As a relatively recent discipline, software engineering data mining has made important advances during the last

years, producing new tools and methods for the assessment and improvement of software products and practices.

Building upon the experience accumulated from software measurement programs, data mining takes a wider and

deeper view on software projects by introducing unusual kinds of information (e.g. mailing lists, tools metadata

or deployment) and addressing new software engineering concerns (e.g. community, tooling or process).

With the advent of open data principles and the dissemination of tools to manipulate and explore data, a new way

of using analytics has emerged to provide domain-specific interpretation and visualisation of data assets. Part of

this new challenge is to provide a consistent, unified vision on data across projects to provide adapted and context-

aware answers to developers, managers, and users of projects.

This article describes Alambic, an open-source framework and service for software project data management. The

platform retrieves data from various tools and repositories used in software development, presents them in a variety

of meaningful ways and provides unified data access for data enthusiasts in an attempt to ease and foster the usage

and interpretation of software-related data.

Key words: software repository data mining, open data, software quality, open source, business intelligence,

project management.

1 INTRODUCTION

Software engineering data mining is at the crossroads of two developing fields that have tremendously advanced

in the recent years. From the software engineering perspective, lessons learned from years of failed and successful

software projects have been catalogued and now provide a comprehensive set of practices and empirical knowledge

– although some concepts still miss a common, established consensus among actors of the field. Software

measurement programs have been widely studied and debated and now offer a comprehensive set of

recommendations and known issues for practitioners. On the data mining side, research areas like software

repository mining [Hemmati2013], categorisation of artefacts, program comprehension [Storey2005], or developer

assistance [Marri2009, Bruch2010] have brought new insights and new perspectives with regards to data available

for analyses and the guidance that can be drawn from them. This has led to a new era of knowledge for software

measurement programs, which expand their scope beyond simple assessment concerns. Data mining programs

have enough information on hand to leverage quality assessment to pragmatic recommendations and improvement

of the process, practices and overall quality of software projects.

Alambic is an open-source framework1 and service2 that brings these advanced software repository data mining

technics to projects. It has been designed and developed by software practitioners, using state-of-the-art research

technics and tools to deliver clear insights and practical advice to project teams and users. This article presents the

Alambic framework and service, the quality assessment and improvement method associated, and how it helps

teams gather, manage and publish software engineering data.

1 BitBucket repository: :https://bitbucket.org/BorisBaldassari/alambic.

2 Eclipse Alambic dashboard: http://eclipse.castalia.camp.

https://bitbucket.org/BorisBaldassari/alambic
http://eclipse.castalia.camp/

2 STATE OF PRACTICE

2.1 A word about Software Quality

If one intends to improve software quality, then one first needs to define it in one's own specific context. Dozens

of definitions have been proposed and widely debated for software quality, from conformance to requirements

[Crosby1979] to fitness for use [Juran1999], but none of them have gained a definitive acceptance among the

community or the industry – because the notion of quality may vary.

Standards like ISO 9126 [ISO9126] or the 250XX series [ISO25000] propose interesting references for product

quality and have been quite well adopted by the software industry. The ISO 15504 and CMMi [CMMi2010]

standards provide useful guidelines for process maturity assessment and improvement at the organisational level.

Kitchenham and Pfleeger [Kitchenham1996], further citing Garvin's teachings on product quality, conclude that

“quality is a complex and multifaceted concept that can be described from five different perspectives”:

 The transcendental view sees quality as something that can be recognised but hardly defined.

 The user view sees quality as fitness for purpose.

 The manufacturing view sees quality as conformance to specification.

 The product view attaches quality to inherent characteristics of the product.

 The value-based view sees quality as the interest or money users will put on it.

Even in the restricted situation of a specific software project most people will implicitly have different meanings

for quality. For that reason, the requirements and notion of quality need to be openly discussed and explicitly

stated. Relying on well-known definitions and concepts issued from both standards and experts in the domain

greatly helps actors to reach an agreement and elaborate their own definition of quality.

2.2 Software engineering data mining

Data mining offers a new perspective on the information available from software projects, thus unleashing

powerful new tools and methods for this activity. While software measurement programs allow to assess aspects

of the product or project quality, software data mining programs offer enough information to build upon the

assessment phase and deliver practical recommendations for the improvement of quality. In the context of software

development this can be achieved through e.g. action lists for refactoring, maintainability warnings for overly

complex files, or notice when too many support questions lie unanswered. Data mining methods offer a plethora

of useful tools for this purpose. Outliers detection [Pachgade2012, Singh2013] gives precious information for

artefacts or project characteristics that show a deviation from usual behaviour. Clustering [Naib2013] allows to

classify artefacts according to multi-dimensional criteria. Recommender systems [Bruch2010, Robillard2010] are

used to propose good practices, code snippets or detect bug patterns.

2.3 Software engineering data repositories

In recent years many open data platforms have been created, some of them related to software engineering. Many

forges and community web sites have setup a dedicated service for people to use their data assets – Eclipse3,

GitHub4 and StackExchange5 are well-known examples. OpenHub6, operated by Black Duck software, proposes

basic configuration management and code metrics for more than 600,000 open-source projects. Squoring's

AgileRanking7 proposes a multi-dimensional quality analysis based on code, configuration management, mailing

lists and issue tracking repositories. These websites are not only useful for developers, but also represent an

interesting data source for the analysis of its different characteristics or attributes.

3 FROM MEASURES TO UNDERSTANDING TO ACTIONS

Considering the above-mentioned perils, we propose a few guidelines to be followed when setting up a data mining

process. These allow to ensure the integrity and usability of information and keep all actors synchronised on the

same concerns and solution.

3.1 Declare the intent

The whole mining process is driven by its stated goals. The quality model and attributes, means to measure it, and

presentation of the results will differ if the program is designed as an audit-like, acceptance test for projects, or as

an incremental quality improvement program to ease evolution and maintenance of projects. The users of the

mining program, who may be developers, managers, buyers, or end-users of the product, have to map its objectives

to concepts and needs they are familiar with. Including users in the definition of the intent of the program also

3 The Eclipse Dashboard: http://dashboard.eclipse.org.

4 GitHub archives: https://www.githubarchive.org.

5 StackExchange data explorer: http://data.stackexchange.com.

6 OpenHub by BlackDuck Software: http://openhub.net.

7 AgileRanking by Squoring Technologies: http://www.agileranking.com.

http://dashboard.eclipse.org/
https://www.githubarchive.org/
http://data.stackexchange.com/
http://openhub.net/
http://www.agileranking.com/

helps prevent counter-productive use of the metrics and quality models. The intent must be simple, clearly

expressed in a few sentences, and published for all considered users of the program.

3.2 Identify quality attributes

The concerns identified in the intent are then decomposed into quality attributes. First this gives a structure to

the quality model, and secondly allows one to rely on well-defined characteristics – which greatly simplifies the

communication and exchange of views. Recognised standards and established practices provide useful frameworks

and definitions for this step. One should strive for simplicity when elaborating quality attributes and concepts.

Common sense is a good argument, and even actors that have no knowledge of the field associated to the quality

attributes should be able to understand them. Obscurity is a source of fear and distrust and must be avoided. The

output of this step is a fully-featured quality model that reflects all of the expected needs and views of the mining

program. The produced quality model is also a point of convergence for all actors: requirements of different origin

and nature are bound together and form a unified, consistent view.

3.3 Identify available metrics

Once we precisely known what quality characteristics we are looking for, we have to identify measures that reflect

this information need. Data retrieval is a fragile step of the mining process. Depending on the information we are

looking for, various artefact types and measures may be available: one has to select them carefully according to

their intended purpose. The different repositories available for the projects being analysed should be listed, with

the measures that may be retrieved from them. Selected metrics have to be stable and reliable (i.e. their meaning

to users must remain constant over time and usage), and their retrieval automated (i.e. no human intervention is

required). This step also defines how the metrics are aggregated up to the top quality characteristics. Since there

is no universally recognised agreement on these relationships one has to rely on local understanding and

conventions. All actors, or at least a vast majority of them, should agree on the meaning of the selected metrics

and the links to the quality attributes.

3.4 Linking metrics to quality attributes

Many research papers have studied the correlation between quality attributes and well-known metrics, while

experienced software practitioners have their own rules-of-thumb gained from years of practices in specific

domains and projects. The measurement theory also adds the representational condition [Kaner2004], which can

be hardly demonstrated in empirical software engineering given the huge diversity of processes, methods and

constraints of software projects. As a result, these links have to be defined on a case by case basis, to match the

project's specifics and the community's understanding of their relationships. In Alambic the quality model can be

customised to tailor quality concerns and links to data sources for the domain and audience of the dashboard.

3.5 Provide targeted advice

Another important improvement path for software quality assessment and improvement frameworks is to provide

pragmatic advice for practitioners. In a time-constrained environment, teams need to quickly understand and figure

out what can be done next for better performance. Guidance should be proposed to help teams better configure the

tools, point out incorrect and missing data, and identify good and bad practices.

4 ALAMBIC: CONTEXT-AWARE DATA MINING

4.1 Main requirements

Ease of use

Alambic plugins are tailored for specific tools and are really easy to setup: in most cases one simply needs to

provide a project ID or URL to enable the complete analysis of a new aspect of the project. As an example the

Hudson CI plugin only requires the Hudson instance URL to automatically retrieve jobs information, compute

metrics, draw nice visualisations and list actions.

Centralise all software-related data in one single place

Alambic takes care of retrieving data from various repositories and data sources along the software development

process, and provides a consistent, unified interface to exploit it. By using a single point of access for all software-

related data, teams can easily build cross-discipline analysis and reports.

Provide relevant insights for teams

Software practitioners need practical information about how the project performs and what can be done next.

Targeted at software projects, Alambic provides to-the-point lists, numbers and visualisation on useful areas of

improvement for the project. As an example the Stack Overflow plugin lists recent non-answered questions that

attracted a lot of votes, and common problem keywords about the product.

Provide pragmatic checks and advice

Alambic goes beyond simple reports and provides useful checks and pragmatic advice for practitioners. Many

verifications and consistency checks can – and should – be run automatically and report on what is wrong and

what actions should be taken to fix it. An example plugin is the Eclipse PMI plugin, which checks for incorrect

entries in the process repository of the Eclipse forge and lists actions to fix them.

4.2 Architecture

Alambic uses a modular architecture based on plugins to enable the development of independent add-ons. Each

plugin can retrieve data from a repository, analyse it to run automatic checks or compute derived metrics, and

provide advanced visualisation.

4.3 Data sources

Metrics Grimoire is an open-source library that analyses mailing lists, configuration management logs (e.g. git,

svn, cvs), and issue tracking systems (e.g. bugzilla, jira). It has been developed by Bitergia (the LibreSoft spin-

off).

The PMD results analysis plugin helps people understand the output of the tool, and proposes a strategy to fix

violations step by step. The plugin also proposes some guidance to improve the tool's configuration and fine-tune

the rules checked.

Projects using Hudson as a continuous integration engine can get insights on their build performance: amount of

failing and unstable builds, jobs that should be disabled or specifically watched, and the history of builds.

The Stack Overflow questions and answers website is a major place to get and provide support for the open-

source community. Long-standing unanswered questions and repetitive topics provide useful hints as to the

problems encountered by people and the support provided by the project.

4.4 Presenting data

Open Data: make data available

One of the foundation principles of open data is the full availability of data. It has to be in an open format, should

be easy to import and play with in order to foster the use and reuse of raw numbers by domain specialists. Alambic

proposes a unified REST interface to access every piece of information about a project, in JSON or CSV formats.

Data access is self-documented and tutorials are available to help people reuse this asset in common tools like R

or Excel.

Visualisation: make data visible

Good visualisation helps people quickly grasp the essentials of a situation. Colourful, interactive and customisable

graphics enable users to play, reuse and exploit data on the project. As an example, the history of non-answered

questions provided by the Stack Overflow plugin offers in a single view the support history and trend of interest

for the project, and highlights unanswered user concerns.

Interacting with numbers and graphics

Because users may need a different perspective on the data for custom analysis and concerns, Alambic provides

several ways to further play with data and extract custom insights from it. Firstly, the data sets can be easily

imported in other tools to be exploited (R, python, Excel, BI products, etc.). Secondly, most plots are built with

interactivity in mind, through javascript-powered libraries well-suited for web publishing.

Disseminating data

All Alambic graphics can be exported and reused on external web sites. Most graphics include interactivity even

once exported, and can be safely used by teams, auditors, and data journalists. Many data-intensive graphics use

the plot.ly library [Plotly2015], which enables users to freely clone, edit and publish data and plots.

5 USE CASES

Use cases are an important part of the definition of a product: they ensure that the delivered service fulfils practical

needs, is pertinent to a context, and will be actually used. Alambic was built on two main use cases, one for the

embedded systems industry (PolarSys), and the other targeted at the Eclipse community at large.

5.1 The PolarSys dashboard

PolarSys is an Eclipse Industry Working Group that aims at providing a complete toolset for the development of

critical embedded systems for the aeronautics, space and automotive industry. The maturity assessment task force

has to evaluate the maturity of open-source software projects so they can be used in critical embedded software

developments by big companies while sharing the maintenance cost of the toolset. Two main objectives have been

defined for the PolarSys maturity model:

 Assess individual components to preserve the full stack maturity, and give visibility to users. From this

perspective, the rating established by the measurement process acts as a quality gate for projects before

entering the PolarSys umbrella and for their releases before being published.

 Help projects conform to maturity requirements, improve their practices, and better understand their

developments. The process is meant to help rather than sanction teams, and allows them to keep track of

their conformance on a day to day basis.

The PolarSys dashboard uses a specific quality model tailored to the domain constraints and notions of quality,

and linked to custom in-house data sources.

5.2 The Eclipse forge

The Eclipse forge proposes a set of services and processes available to all projects, like milestone planning, code

reviews, and IP management. These services are centrally managed and made available to the public through

various means:

 Projects metadata are retrieved from the PMI (Project Management Infrastructure) through a REST API.

It includes a description of the project, links to the different repositories, and release information.

 Configuration management, issue tracking systems, and mailing lists information are retrieved using the

Grimoire toolset [Gonzalez2015] and are stored as JSON files on a public web server8.

 Hudson instances for continuous integration. Hudson provides an API to get every build information.

 Marketplace information is retrieved through the web site REST API.

 Source code metrics are retrieved from the Eclipse SonarQube instance database.

The Alambic instance for Eclipse uses only public sources and features a more generic quality model. A collection

of plugins provides guidance to help project improve their process, product and community performance.

6 CONCLUSION AND PERSPECTIVES

Software engineering data represents a wealth of information that needs to be correctly managed and exploited:

for development teams to improve their practices, for team leaders to monitor the project's progress, for marketing

teams to communicate on facts, and for end-users to assess the maturity or activity of off-the-shelf components.

The Alambic framework automates the retrieval, analysis and publishing of the various repositories used by the

software project and proposes ready-to-use data sets, insights and reports for all of its actors. The Alambic service

for Eclipse has received a growing interest from users and developers of the forge, and new dashboards targeting

other major open-source forges like Apache and GitHub are planned before the end of the year.

We believe this interest demonstrates how open data is becoming increasingly more important for the management

of software projects. Building upon this, Alambic will be improved to include new data source plugins, analysis,

visualisation, and automatic reports. New use cases pertaining to other areas like system engineering and DevOps

are being discussed to expand the reach of open data to new domains.

8 The Eclipse dashboard: http://dashboard.eclipse.org.

http://dashboard.eclipse.org/

7 REFERENCES

[Hemmati2013] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M. W. Godfrey. The

MSR Cookbook. In 10th International Workshop on Mining Software Repositories, pages 343–352, 2013.

[Storey2005] M.-A. Storey. Theories, methods and tools in program comprehension: Past, present and future. In

13th International Workshop on Program Comprehension (IWPC 2005). IEEE Computer Society, 2005.

[Marri2009] M. R. Marri, S. Thummalapenta, and T. Xie. Improving Software Quality via Code Searching and

Mining. In Proceedings of the 2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools

and Evaluation, pages 33–36, 2009.

[Bruch2010] M. Bruch and M. Mezini. Improving Code Recommender Systems using Boolean Factor Analysis

and Graphical Models. 2010.

[Crosby1979] P. B. Crosby. Quality is free: The art of making quality certain, volume 94. McGraw-Hill New York,

1979.

[Juran1999] J. M. Juran, A. B. Godfrey, R. E. Hoogstoel, and E. G. Schilling. Juran’s Quality Handbook, volume

2. McGraw Hill New York, 1999.

[ISO9126] International Standards Organisation, Software Engineering: Product Quality, ISO/IEC 9126-1, 2005.

[ISO25000] International Standards Organisation, System and Software Quality Requirements and Evaluation,

2014.

[CMMi2010] CMMI Product Team. CMMI for Development, Version 1.3. Technical report, Carnegie Mellon

University, 2010.

[Kitchenham1996] B. Kitchenham and S. Pfleeger. Software quality: the elusive target. IEEE Software,

13(1):12−21, 1996.

[Pashgade2012] M. S. D. Pachgade and M. S. S. Dhande. Outlier Detection over Data Set Using Cluster-Based

and Distance-Based Approach. International Journal of Advanced Research in Computer Science and Software

Engineering, 2(6):12–16, 2012.

[Singh2013] G. Singh and V. Kumar. An Efficient Clustering and Distance Based Approach for Outlier Detection.

International Journal of Computer Trends and Technology, 4(7):2067–2072, 2013.

[Naib2013] B. B. Naib. An Improved Clustering Approach for Software Quality Analysis. International Journal

of Engineering, Applied and Management Sciences Paradigms, 05(01):96–100, 2013.

[Robillard2010] M. Robillard and R. Walker. Recommendation systems for software engineering. IEEE Software,

27(4):80–86, 2010.

[Kaner2004] . Kaner and W. P. Bond. Software engineering metrics: What do they measure and how do we know?

Methodology, 8(6):1-12, 2004

[Plotly2015] Plotly Technologies Inc., Collaborative data science, 2015. URL: https://plot.ly

[Gonzalez2015] J.M. Gonzalez-Barahona, G. Robles, D. Izquierdo-Cortazar, "The MetricsGrimoire Database

Collection", IEEE/ACM 12th Working Conference on Mining Software Repositories (MSR), 2015.

https://plot.ly/

